Semiparametric estimation of a mixture of two linear regressions in which one component is known

نویسندگان

  • L. Bordes
  • I. Kojadinovic
چکیده

A new estimation method for the two-component mixture model introduced in Vandekerkhove (2012) is proposed. This model, which consists of a two-component mixture of linear regressions in which one component is entirely known while the proportion, the slope, the intercept and the error distribution of the other component are unknown, seems to be of interest for the analysis of large datasets produced from two-color ChIPchip high-density microarrays. In spite of good performance for datasets of reasonable size, the method proposed in Vandekerkhove (2012) suffers from a serious drawback when the sample size becomes large, as it is based on the optimization of a contrast function whose pointwise computation requires O(n2) operations. The range of applicability of the method derived in this work is substantially larger as it is based on a method-of-moment estimator whose computation only requires O(n) operations. From a theoretical perspective, the asymptotic normality of both the estimator of the Euclidean parameter vector and of the semiparametric estimator of the c.d.f. of the error is proved under weak conditions not involving the zero-symmetry assumption typically used this last decade. The finite-sample performance of the latter estimators is studied

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of a semiparametric mixture of regressions model

We introduce in this paper a new mixture of regressions model which is a generalization of the semiparametric two-component mixture model studied in Bordes et al. (2006b). Namely we consider a two-component mixture of regressions model in which one component is entirely known while the proportion, the slope, the intercept and the error distribution of the other component are unknown. Our model ...

متن کامل

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

Semiparametric Bootstrap Prediction Intervals in time Series

One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...

متن کامل

Wavelet Threshold Estimator of Semiparametric Regression Function with Correlated Errors

Wavelet analysis is one of the useful techniques in mathematics which is used much in statistics science recently. In this paper, in addition to introduce the wavelet transformation, the wavelet threshold estimation of semiparametric regression model with correlated errors with having Gaussian distribution is determined and the convergence ratio of estimator computed. To evaluate the wavelet th...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013